Preview

Arctic and Innovations

Advanced search

Environmental pollution evaluation during the life cycle of an onshore wind farm in the Arctic

https://doi.org/10.21443/3034-1434-2025-3-3-65-78

Abstract

This article presents data on the consequences of climate change on the planet. The achievements of wind power both in Russia and other countries are discussed. The existing method for determination of pollutant emissions during the life cycle of wind farms is analyzed. The main provisions of a new method for determining pollutant emissions during the life cycle of wind farms based on aggregated data are presented. The developed method is applied to calculate pollutant emissions during the life cycle of an onshore wind farm located in the Arctic zone of the Russian Federation. The geoecological effect of using onshore wind farm as a source of electricity supply is assessed in comparison with thermal power plants running on coal, fuel oil, and natural gas.

About the Authors

Pavel Yu. Mikheev
Peter the Great State Polytechnical University
Russian Federation

Pavel Yu. Mikheev — Cand. Sci. (Engineering), Senior Lecturer, Higher School of Hydraulic and Energy Construction

195251, Saint Petersburg, ext. ter. Akademicheskoe Municipal district, st. Politekhnicheskaya, 29, litera B

Researcher ID: K-1289-2013

Scopus ID: 57202760535

Tel.: +7(911) 759-90-58



Aleksander S. Strakhov
Peter the Great State Polytechnical University
Russian Federation

Aleksander S. Strakhov — PhD Researcher, Higher School of Hydraulic and Energy Construction,

195251, 195251, Saint Petersburg, ext. ter. Akademicheskoe Municipal district, st. Politekhnicheskaya, 29, litera B

Reasearcher ID: KAM-5340-2024

Tel.: +7(906) 272-66-13



Sergei A. Agafonov
Peter the Great State Polytechnical University
Russian Federation

Sergei A. Agafonov — Research Assistant, Higher School of Industrial, Civil and Road Construction, PhD Researcher, Higher School of Hydraulic and Energy Construction

195251, Saint Petersburg, ext. ter. Akademicheskoe Municipal district,
st. Politekhnicheskaya, 29, litera B

Researcher ID: HHM-5486-2022

Tel.: +7 (921) 345-82-36



References

1. Mikheev P.Yu., Agafonov S.A., Strakhov A.S., Ilin I.V., Borremans A.D., Levina A.I. Application of environmental aggregated data to assess environmental pollution during the life cycle of natural engineering systems. Alternative Energy and Ecology (ISJAEE). 2025;(2):147–162. (In Russ.). https://doi.org/10.15518/isjaee.2025.02.147-162

2. NOAA Global Monitoring Laboratory. Global atmospheric CO₂ concentration. Our World in Data [internet]. Available at: https://ourworldindata.org/grapher/global-co2-concentration (accessed 13 June 2025).

3. Met Office Hadley Centre. Annual temperature anomalies relative to the pre-industrial period in the world. Our World in Data [internet]. Available at: https://ourworldindata.org/grapher/temperature-anomaly (accessed 13 June 2025).

4. Change in water temperature on the planet. Climate Reanalyzer. Climate Change Institute / University of Maine [internet]. Available at: https://climateanalyzer.org/clim/sst_daily/?dm_id=world2 (accessed 16 June 2025).

5. Average monthly surface temperature. Our World in Data [internet]. Available at: https://ourworldindata.org/grapher/average-monthly-surface-temperature?tab=chart (accessed 16 June 2025).

6. Temperatures in the Arctic and Europe. Our World in Data [internet]. Available at: https://ourworldindata.org/data-insights/the-arctic-is-the-worlds-region-that-has-warmed-themost-followed-by-europe (accessed 16 June 2025).

7. Climate Resilience for Energy Security. International Energy Agency [internet]; November 2022. Available at: https://www.iea.org/reports/climate-resilience-for-energy-security.

8. AR6 Synthesis Report: Climate Change 2023. Intergovernmental Panel on Climate Change (IPCC) [internet]. Available at: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed 17 June 2025).

9. The Paris Agreement. UN [internet]; 2015. Available at: https://esg-library.mgimo.ru/upload/iblock/7a6/uq0e4vlafz99pvkr7nfypj1fd3y2gkd2/russian_paris_agreement.pdf?utm_source=docviewer.yandex.ru&utm_medium=referral&utm_campaign=docviewer.yandex.ru&utm_referrer=docviewer.yandex.ru (accessed 17 June 2025). (In Russ.).

10. Net zero by 2050. A Roadmap for the Global Energy Sector. International Energy Agency [internet]; 2021. Available at: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf (accessed 17 June 2025).

11. Which countries have set a net-zero emissions target? Our World in Data [internet]. Available at: https://ourworldindata.org/grapher/net-zero-target-set?tab=table&time=2000.2050 (accessed 17 June 2025).

12. Decree of the President of the Russian Federation No. 666 dated November 4, 2020 “On reducing greenhouse gas emissions” [internet]. Available at: http://www.kremlin.ru/acts/bank/45990 (accessed 18 June 2025). (In Russ.).

13. Order of the Government of the Russian Federation No. 3052-r “On the strategy for the socioeconomic development of the Russian Federation with low greenhouse gas emissions until 2050” [internet]. Available at: http://static.government.ru/media/files/ADKkCzp3fWO32e2yA0BhtIpyzWfHaiUa.pdf (accessed 19 June 2025). (In Russ.).

14. Global Energy Review 2025. International Energy Agency [internet]; March 2025. Available at: https://www.iea.org/reports/global-energy-review-2025.

15. Global Wind Report 2024. Global Wind Energy Council [internet]. Available at: https://26973329.fs1.hubspotusercontent-eu1.net/hubfs/26973329/2.%20Reports/Global%20Wind%20Report/GWR24.pdf?__hstc=45859835.705de88cb34c799f34ba7f3c06ec6d9f.1744111285006.1744111285006.1744111285006.1&__hssc=45859835.4.1744111285006&__hsfp=4049606327 (accessed 17 June 2025).

16. The system operator of the unified energy system of the Russian Federation [internet]; February 2025. Available at: https://www.so-ups.ru/fileadmin/files/company/markets/2025/res/res_feb_25.pdf (accessed 18 June 2025). (In Russ.).

17. Butuzov V.A., Bezrukikh P.P., Gribkov S.V. Russian wind power: scientific and design schools, stages of development, prospects. Zhurnal Santekhnika, otoplenie, konditsionirovanie (SOK) [Journal of Plumbing. Heating. Ventilation]. 2021;(5):62–76. (In Russ.).

18. Kola wind farm — clean energy of the Arctic. С.О.К. [internet]; 15 May 2023. Available at: https://www.c-o-k.ru/market_news/kolskaya-ves-chistaya-energiya-arktiki (accessed 21 June 2025). (In Russ.).

19. Agafonov S.A., Mikheev P.Yu., Uglov A.K. Prospects for the application of cross-laminated timber under Arctic conditions. Arctic and Innovations. 2024;2(2):92–101. (In Russ.). https://doi.org/10.21443/3034-1434-2024-2-2-92-101

20. Global Wind Atlas [internet]. Available at: https://globalwindatlas.info/en/ (accessed 22 June 2025).

21. Kuznetsov N.M., Masloboev V.A., Konovalova O.E. Distributed energy in the regions of the arctic zone of the Russian Federation. Arctic 2035: current issues, problems, solutions. 2021;1(5):13– 21. (In Russ.).

22. Sidorenko G.I., Mikheev P.Yu. Assessment of energy efficiency of power plant life cycles on the basis of RES. Alternative Energy and Ecology (ISJAEE). 2017;(1-3):101-110. (In Russ.). https://doi.org/10.15518/isjaee.2017.01-03.101-110

23. Sidorenko G.I., Mikheev P.Yu. Assessment of the Environmental Efficiency of the Life Cycles of Energy Facilities Based on Renewable Energy Sources. Ecology and Industry of Russia. 2017;21(5):44-49. (In Russ.). https://doi.org/10.18412/1816-0395-2017-5-44-49

24. Sidorenko G.I., Mikheev P.Yu On the efficiency of RES. Energy: economics, technology, ecology. 2018;(2):9–16. (In Russ.).

25. Obrecht T.P., Rock M., Hoxha E., Passer A. BIM and LCA Integration: A Systematic Literature Review. Sustainability. 2020;12(14):5534. https://doi.org/10.3390/su12145534

26. Samniang W., Panuwatwanich K., Tangtermsirikul S., Papong S. BIM-LCA Integration for Carbon Emission Assessment in Construction Industry: Systematic Review and Research Opportunities. In: The 13th International Conference on Construction in the 21st Century (CITC-13), Arnhem, Netherlands, 8–11 May 2023. Available at: https://research-repository.griffith.edu.au/items/0cede7d4-581f-43dc-8e06-59b1f9f63812

27. Xue K., Hossain Md. Uzzal, Liu M., Ma M., Zhang Y., Hu M. BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review. Sustainability. 2021;13(3):1310. https://doi.org/10.3390/su13031310

28. Bernardette S-V., Latas C., García-Martínez A. Critical review of BIM-based LCA method to buildings. Energy and Buildings. 2017;136:110–120. http://doi.org/10.1016/j.enbuild.2016.12.009

29. Safari K., AzariJafari H. Challenges and opportunities for integrating BIM and LCA: Methodological choices and framework development. Sustainable Cities and Society. 2021;67: 102728. https://doi.org/10.1016/j.scs.2021.102728

30. Mikheev P.Yu. Determination of emissions pollutants in the production of elements of wind turbines and wind farms by aggregated data. Energy: economics, technology, ecology. 2023;(5):39–53. (In Russ.).

31. Mikheev P.Yu., Chusov A.N., Politaeva N.A. Database on aggregated data of pollutant emissions during the production of elements of wind turbines and wind farms. Certificate of state registration of the database No. 2023621868. Date of state registration: 07.06.2023. (In Russ.).

32. Mikheev P.Yu., Fedorov M.P., Chusov A.N., Politaeva N.A. Methodology for determining emissions of pollutants during the life cycle of wind power plants by aggregated data. Ecology and Industry of Russia. 2023;27(10):64–71. (In Russ.). https://doi.org/10.18412/1816-0395-2023-10-64-71

33. Mikheev P.Yu., Fedorov M.P., Chusov A.N., Politaeva N.A. Determination of pollutant emissions during the life cycle of wind power plants according to aggregate indicators. International Journal of Hydrogen Energy. 2024;69:1084–1092. https://doi.org/10.1016/j.ijhydene.2024.04.305

34. Sidorenko G.I., Mikheev P.Yu. The effect of the parameters and technical characteristics of wind turbine components on financial and energy costs and emission of pollutants. Industrial Power Engineering. 2018;(4):101–110. (In Russ.).

35. Mikheev P.Yu. Greenhouse gas emissions during the life cycle of onshore wind farms. Energy: economics, technology, ecology. 2022;(5):39–53. (In Russ.).

36. Mikheev P.Yu. Emissions of SO2 eq pollutants during the life cycle of onshore wind farms. Power Engineering Abroad. 2022;(4):24–41. (In Russ.).

37. Mikheev P.Yu. PO4 eq emissions during the life cycle of onshore wind farms. Power Engineering Abroad. 2023;(1):32–50. (In Russ.).

38. Mikheev P.Yu. Impact of pollutant emissions at the stages of the life cycle of onshore wind farms on indicators environmental efficiency Power Engineering Abroad. 2018;(5):32–45. (In Russ.).

39. Mikheev P.Yu. The impact of parameters and technical characteristics of wind turbines pollutant emissions. Energy: economics, technology, ecology. 2022;(6):50–63. (In Russ.).

40. Kola Wind Farm is the world’s most powerful wind farm located in the arctic circle. Russia is a country of achievements [internet]; Available at: https://достижения.рф/achievements/country/371 (accessed 23 June 2025). (In Russ.).

41. SG 3.4-132. Enhanced LCoE and experience in the 3 MW segment [internet]. Available at: https://www.siemensgamesa.com/global/en/home/products-and-services/onshore/windturbine-sg-3-4-132.html (accessed 24 June 2025).

42. The clean energy of the Arctic is now available to everyone. The Kola wind farm is the largest wind farm in the world above the arctic circle [internet]. Available at: https://el5-energo.ru/upload/iblock/3f7/760o8fe82p2s30fev6juud36klxvoyhq/Buklet_KVES_format_A4_27.11. pdf (accessed 24 June 2025). (In Russ.).

43. Agrawal K.Kr., Jain S.A., Jain Kr., Dahiya S. Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using life cycle approach. International Journal of Environmental Science and Technology. 2014;11:1157–1164. https://doi.org/10.1007/s13762-013-0420-z

44. Order No. 300 of the Ministry of Natural Resources and Environment of the Russian Federation dated June 30, 2015, “On Approval of guidelines and instructions for quantifying greenhouse gas emissions by organizations engaged in economic and other activities in the Russian Federation” [internet]. Available at: https://normativ.kontur.ru/document?moduleId=1&documentId=264381. (In Russ.).

45. State Standard Р 51750-2001. Energy conservation. Methods for determination of energy capacity on production of output and rendering of services in technological energy systems. General principles. Moscow: Gosstandart; 2001. (In Russ.).


Review

For citations:


Mikheev P.Yu., Strakhov A.S., Agafonov S.A. Environmental pollution evaluation during the life cycle of an onshore wind farm in the Arctic. Arctic and Innovations. 2025;3(3):65-78. (In Russ.) https://doi.org/10.21443/3034-1434-2025-3-3-65-78

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-1434 (Online)