Preview

Arctic and Innovations

Advanced search

Bound by one chain: Forming an ecological approach to assessing the impact of pollutants and toxic substances on human and animal health in the Arctic

https://doi.org/10.21443/3034-1434-2025-3-4-6-25

Abstract

Specific features of the transfer of persistent toxic substances (РTS) across ecological trophic chains in the conditions of the Arctic tundra are considered. The concept of “dirty dozen” is discussed in relation to the most common РTS. The danger of РTS accumulation in tissues and organs of higher predators and humans for their health in the context of global warming is assessed. The concept of “health as a single unity” is proposed, aimed at preserving all links of the Arctic food web and, ultimately, improving the health and well-being of people.

About the Authors

Michael B. Shilin
Russian State Hydrometeorological University
Russian Federation

Mikhail B. Shilin — Dr. Sci. (Geography), Prof., Institute of Information Systems and Geotechnologies

192007, Saint Petersburg, Voronezhskaya str., 79



Alexandra L. Abramova
Russian State Hydrometeorological University
Russian Federation

Alexandra L. Abramova — Postgraduate Researcher

192007, Saint Petersburg, Voronezhskaya str., 79



Valery M. Abramov
Admiral Makarov State University of Maritime and Inland Shipping
Russian Federation

Valery M. Abramov — Cand. Sci. (Phys.-Math.), Assoc. Prof., Marine Academy Institute

198035, Saint Petersburg, Dvinskaya str., 5/7



Anna N. Zavyalova
Saint Petersburg State Pediatric Medical University
Russian Federation

Anna N. Zavyalova — Dr. Sci. (Med.), Assoc. Prof., Professor of the Department of Propaedeutics of Childhood Diseases with a Course in General Child Care

194100, Saint Petersburg, Litovskaya str., 2



References

1. Odum Yu. Fundamentals of ecology. Moscow: Mir Publ.; 1975. (In Russ.).

2. Fedorov M.P., Shilin M.B., Blinov L.N., Bobylev N.G., Molodkina L.M., Romanov M.V. Ecological foundations of natural and technical systems management. St. Petersburg: Publishing House of the Polytechnic University; 2007. (In Russ.).

3. Odum E. Ecology — A Bridge Between Science and Society. Sinauer Ass.; 1997.

4. Elton Ch. Animal ecology. Moscow — Leningrad: Гос. изд-во биол. и мед. лит-ры; 1934. (In Russ.).

5. Krupnik I.I. Arctic Ethnoecology: models of traditional nature management of marine hunters and reindeer herders of Northern Eurasia. Moscow: Nauka Publ.; 1989. (In Russ.).

6. AMAP. Assessment Report: Arctic Pollution Issues. Arctic Monitoring and Assessment Programme (AMAP) [internet]. Oslo, Norway; 1998. Available at: https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/821/original/AMAP_1.pdf?1629126805

7. Malori Zh. Whale Alley. Moscow: Nota bene; 2007. (In Russ.)/

8. Aitmatov Ch.T. A piebald dog running along the edge of the sea. Moscow: Azbuka Publ.; 2024. (In Russ.).

9. AMAP. AMAP assessment 2002 — Human Health in the Arctic 2003 [internet]. Oslo, Norway; 2003. Available at: https://www.amap.no/documents/doc/amap-assessment-2002-human-health-in-the-arctic/95

10. AMAP. AMAP Assessment 2002: Persistent Organic Pollutants in the Arctic [internet]. Oslo, Norway; 2004. Available at: https://www.amap.no/documents/doc/amap-assessment2002-persistent-organic-pollutants-in-the-arctic/96

11. AMAP. AMAP Assessment 2002: Heavy Metals in the Arctic [internet]. Oslo, Norway; 2005. Available at: https://www.amap.no/documents/doc/amap-assessment-2002-heavymetals-inthe-arctic/97.

12. AMAP. AMAP Assessment 2009: Human Health in the Arctic [internet]. Oslo, Norway; 2009. Available at: https://www.amap.no/documents/doc/amap-assessment-2009-humanhealth-in-the-arctic/98

13. AMAP. AMAP Assessment 2015: Human Health in the Arctic [internet]. Oslo, Norway; 2009. Available at: https://www.amap.no/documents/doc/Amapassessment-2015-Humanhealth-in-the-Arctic/1346

14. Shilin M. Radioactive contamination of Russia’s Northern Seas: how to evaluate a real treat. The Monitor. 1998;4(4):52–53.

15. Dietz R., Outridge P.M., Hobson K.A. Anthropogenic contribution to mercury levels in present-day Arctic animals — a review. Sci. Total Environ. 2009;407(24):6120–6131. https://doi.org/10.1016/j.scitotenv.2009.08.036

16. Muir D.C.G., de Wit C.A. Trends of legacy and new persistent organic pollutants in the circumpolar Arctic: overview, conclusions, and recommendations. Sci. Total Environ. 2010;408(15):3044– 3051. https://doi.org/10.1016/j.scitotenv.2009.11.032

17. Dietz R., Basu N., Braune B., O’Hara T., Letcher R., Scheuhammer T., et al. What are the toxicological effects of mercury in Arctic biota? Sci. Total Environ. 2013;443:775–790. https://doi.org/10.1016/j.scitotenv.2012.11.046

18. Butt C.M., Berger U., Bossi R., Tomy G.T. Levels and trends of poly- and perfluorinated compounds in the Arctic environment. Sci. Total Environ. 2010;408(15):2936–2965. https://doi.org/10.1016/j.scitotenv.2010.03.015

19. Houde M., De Silva A.O., Muir D.C.G., Letcher R.J. Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ. Sci. Technol. 2011;45(19):7962–7973. https://doi.org/10.1021/es104326w

20. Rigét F., Vorkamp K., Bossi R., Sonne C., Letcher R.J., Dietz R. Twenty years of monitoring of persistent organic pollutants in Greenland biota. A review. Environ. Pollut. 2016;217:114–123. https://doi.org/10.1016/j.envpol.2015.11.006

21. Letcher R.J., Bustnes J.O., Dietz R., Jenssen B.M., Jørgensen E.H., Sonne C. et al. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci. Total Environ. 2010;408(15):2995–3043. https://doi.org/10.1016/j.scitotenv.2009.10.038

22. Sonne C. Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ. Int. 2010;36(5):461–491. https://doi.org/10.1016/j.envint.2010.03.002

23. Sonne C., Letcher R.J., Bechshøft T.Ø., Rigét F.F., Muir D.C.G., Leifsson P.S. et al. Two decades of biomonitoring polar bear health in Greenland: a review. Acta Vet. Scan. 2012;54:S15. https:// doi.org/10.1186/1751-0147-54-s1-s15

24. Brown T.M., Macdonald R.W., Muir D.C.G., Letcher R.J. The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada’s Eastern Arctic. Sci. Total Environ. 2017;618:500–517. https://doi.org/10.1016/j.scitotenv.2017.11.052

25. Tartu S., Bourgeon S., Aars J., Andersen M., Polder A., Thiemann G.W., Welker J.M., Routti H. Sea ice-associated decline in body condition leads to increased concentrations of lipophilic pollutants in polar bears (Ursus maritimus) from Svalbard, Norway. Sci. Total Environ. 2017;576:409–419. https://doi.org/10.1016/j.scitotenv.2016.10.132

26. Pedro S., Boba C., Dietz R., Sonne C., Rosing-Asvid A., Hansen M., Provatas A., McKinney M.A. Blubber-depth distribution and bioaccumulation of PCBs and organochlorine pesticides in Arctic-invading killer whales. Sci. Total Environ. 2017;601–602:237–246. https://doi.org/10.1016/j.scitotenv.2017.05.193

27. Letcher R.J., Morris A.D., Dyck M., Sverko E., Reiner E., Blair D.A.D., Chu S. G., Shen L. Legacy and (re)emerging halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada. Sci. Total Environ. 2018;610–611:121–136. https://doi.org/10.1016/j.scitotenv.2017.08.035

28. Kirkegaard M., Sonne C., Dietz R., Jenssen B.M., Leifsson P.S., Jensen J.E.B., Letcher R. J. Testosterone concentrations and male genital organ morphology in Greenland sled dogs (Canis familiaris) dietary exposed to organohalogen contaminants. Toxicol. Environ. Chem. 2010;92(5):955–967. https://doi.org/10.1080/02772240903143836

29. Sonne C., Kirkegaard M., Jacobsen J., Jenssen B.M., Letcher R.J., Dietz R. Altered 25-hydroxyvitamin D3 in liver tissue from Greenland sledge dogs (Canis familiaris) dietary exposed to organohalogen polluted minke whale (Balaenoptera acuterostrata) blubber. Ecotoxicol. Environ. Saf. 2014;104:403–408. https://doi.org/10.1016/j.ecoenv.2013.11.017

30. AMAP. AMAP Assessment 2013: Arctic Ocean Acidification [internet]. Oslo, Norway; 2013. Available at: https://digital.library.unt.edu/ark:/67531/metadc1258544/m2/1/high_res_d/AOAscience-sec.pdf.pdf.

31. Grandjean P., Landrigan P.J. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–2178. https://doi.org/10.1016/s0140-6736(06)69665-7

32. Jenssen B.M., Dehli Villanger G., Gabrielsen K.M., Bytingsvik J., Ciesielski T.M., Sonne C., Dietz R. Anthropogenic flank attack on polar bears: interacting consequences of climate warming and pollutant exposure. Front. Ecol. 2015;(3):1–7. https://doi.org/10.3389/fevo.2015.00016

33. Polischuk S.C., Norstrom R.J., Ramsay M.A. Body burdens and tissue concentrations of organochlorines in polar bears (Ursus maritimus) vary during seasonal fasts. Environ. Pollut. 2002;118(1):29–39. https://doi.org/10.1016/s0269-7491(01)00278-0

34. Dietz R., Rigét F.F., Sonne C., Letcher R.J., Born E.W., Muir D.C.G. Seasonal and temporal trends in polychlorinated biphenyls and organochlorine pesticides in East Greenland polar bears (Ursus maritimus), 1990–2001 // Sci Total Environ. 2004;331(1-3):107–124. https://doi.org/10.1016/j.scitotenv.2004.03.025

35. Muir D.C.G., Backus S., Derocher A.E., Dietz R., Evans T.J., Gabrielsen G.W. et al. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard. Environ. Sci. Technol. 2006;40(2):449–455. https://doi.org/10.1021/es051707u

36. Dietz R., Rigét F.F., Sonne C., Muir D.C.G., Backus S., Born E.W., Kirkegaard M., Muir D.C.G. Age and seasonal variability of polybrominated diphenyl ethers in free-ranging East Greenland polar bears (Ursus maritimus). Environ. Pollut., 2007;146(1):177–184. https://doi.org/10.1016/j.envpol.2006.05.040

37. Bytingsvik J., Lie E., Aars J., Derocher A.E., Wiig Ø., Jenssen B.M. PCBs and OH-PCBs in polar bear mother-cub pairs: a comparative plasma levels in 1998 and 2008. Sci. Total Environ. 2012;417-418:117–128. https://doi.org/10.1016/j.scitotenv.2011.12.033

38. Nuijten R.J.M., Hendriks A.J., Jenssen B.M., Schipper A.M. Circumpolar contaminant concentrations in polar bears (Ursus maritimus) and potential population-level effects. Environ. Res. 2016;151:50–57. https://doi.org/10.1016/j.envres.2016.07.021

39. Dietz R., Gustavson K., Sonne C., Desforges J.P., Rigét F.F., McKinney M.A., Letcher R.J. Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus). Environ. Res. 2015;140:45–55. https://doi.org/10.1016/j.envres.2015.03.011

40. Pavlova V., Grimm V., Dietz R., Sonne C., Vorkamp K., Rigét F.F. et al. Modelling population level effects of PCB contamination in East Greenland polar bears. Arch. Environ. Contam. Toxicol. 2016;70:143–154. https://doi.org/10.1007/s00244-015-0203-2

41. AMAP. AMAP Assessment 2018: Biological Effects of Contaminants on Arctic Wildlife and Fish. Arctic Monitoring and Assessment Programme (AMAP) [internet]. Oslo, Norway; 2018. Available at: https://www.amap.no/documents/doc/amap-assessment-2018-biological-effects-of-contaminants-on-arctic-wildlife-and-fish/1663.

42. Lindh C.H., Rylander L., Toft G., Axmon A., Rignell-Hydbom A., Giwercman A. et al. Blood serum concentrations of perfluorinated compounds in men from Greenlandic Inuit and European populations. Chemosphere, 2012;88(11):1269–1275. https://doi.org/10.1016/j.chemosphere.2012.03.049

43. Sonne C., Dietz R., Letcher R.J. Chemical cocktail party in East Greenland: a first time evaluation of human organohalogen exposure from consumption of ringed seal and polar bear tissues and possible health implications. Toxicol. Environ. Chem. 2013;95(5):853–859. https://doi.org/10.1080/02772248.2013.809917

44. Wielsoe M., Kern P., Bonefeld-Jorgensen E.C. Serum levels of environmental pollutants is a risk factor for breast cancer in Inuit: a case control study. Environ. Health, 2017;16:56. https://doi.org/10.1186/s12940-017-0269-6

45. Deutch B., Dyerberg J., Pedersen H.S., Asmund G., Møller P., Hansen J.C. Dietary composition and contaminants in north Greenland, in the 1970s and 2004. Sci. Total Environ. 2006;370:372– 381. https://doi.org/10.1016/j.scitotenv.2006.07.015

46. Johansen P., Muir D.C.G., Asmund G., Rigét F.F. Human exposure to contaminants in the traditional Greenland diet. Sci. Total Environ. 2004;331(1-3):189–206. https://doi.org/10.1016/j.scitotenv.2004.03.029

47. Nielsen E., Larsen J.C., Ladefoged O. Risk assessment of contaminant intake from traditional Greenland food items [internet]. Danish Veterinary and Food Administration; 2006. Available at: https://backend.orbit.dtu.dk/ws/portalfiles/portal/3563700/Risk_assesment_traditional_Greenland_food_items.pdf.

48. Bonefeld-Jørgensen E. Biomonitoring in Greenland: human biomarkers of exposure and effects—a short review. Rural Remote Health. 2010;10:1362. https://doi.org/10.22605/rrh1362

49. AMAP. AMAP Assessment 2011: Mercury in the Arctic [internet]. Oslo, Norway; 2011. Available at: https://www.amap.no/documents/doc/amap-assessment-2011-mercury-in-the-arctic/90.

50. Grandjean P., Satoh H., Murata K., Eto K. Adverse effects of methylmercury: environmental health research implications. Environ. Health Perspect. 2010;118(8):1137–1145. https://doi.org/10.1289/ehp.0901757

51. Long M., Bossi R., Bonefeld-Jorgensen E.C. Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit. Int. J. Circumpolar health. 2012;71(1):17998. https://doi.org/10.3402/ijch.v71i0.17998

52. Sonne C., Gustavson K., Rigét F.F., Dietz R., Krüger T., Bonefeld-Jørgensen E.C. Physiologically based pharmacokinetic modeling of POPs in Greenlanders Environ. Int. 2014;64:91–97. https://doi.org/10.1016/j.envint.2013.12.006

53. Bonefeld-Jørgensen E., Long M., Bossi R., Ayotte P., Asmund G., Krüger T. et al. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study. Environ. Health, 2011;10:88. https://doi.org/10.1186/1476-069x-10-88

54. Grandjean P., Landrigan P.J. Neurobehavioural effects of development toxity. The Lancet Neurology. 2014;13(3):330–338. https://doi.org/10.1016/s1474-4422(13)70278-3

55. Pogrebov V.B., Shilin M.B. Environmental monitoring of the coastal zone of the Arctic seas. St. Petersburg: Gidrometeoizdat Publ.; 2001. (In Russ.)

56. Snytko V.A., Sobisevich A.V. System of environmental monitoring in the scientific heritage of academicians I. P. Gerasimov and Yu. A. Israel. Archived copy dated April 4, 2022 on the Wayback Machine. In: Environmental status indication: theory, practice, education: proceedings of the Fifth International Scientific and Practical Conference, Nov 30 — Dec 3. 2017: sat. art. Moscow; 2017, pp. 393–398. (In Russ.)

57. Dietz R., Born E.W., Rigét F.F., Aubail A., Sonne C., Drimmei R.C., Basu N. Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ. Sci. Technol. 2011;45(4):1458–1465. https://doi.org/10.1021/es1028734

58. Innovative Digital Technologies Development for Projects Management within Northern Sea Route Area / V. M. Abramov, E. P. Istomin, N. N. Popov [et al.] // Vision 2025: Education Excellence and Management of Innovations through Sustainable Economic Competitive Advantage: Proceedings of the 34th International Business Information Management Association Conference, IBIMA 2019, Madrid, 13–14 November 2019. — Madrid: International Business Information Management Association, 2019. — P. 10132-10141. EDN ARNAIR.

59. Rigét F.F., Bossi R., Sonne C., Vorkamp K., Dietz R. Trends of perfluorochemicals in Greenland ringed seals and polar bears: indications of decreasing trends. Chemosphere. 2013;93(8):1607– 1614. https://doi.org/10.1016/j.chemosphere.2013.08.015

60. Pertoldi C., Sonne C., Wiig Ø., Baagøe H.J., Loeschcke V., Bechshøft T.Ø. East Greenland and Barents Sea polar bears (Ursus maritimus): adaptive variation between two populations using skull morphometrics as an indicator of environmental and genetic differences. Hereditas. 2012;149(3):99–107. https://doi.org/10.1111/j.1601-5223.2012.02259.x

61. Sonne C., Dyck M., Rigét F.F., Bech-Jensen J.E., Hyldstrup L., Letcher R.J. et al. Penile density and globally used chemicals in Canadian and Greenland polar bears. Environ Res. 2015;137:287– 291. https://doi.org/10.1016/j.envres.2014.12.026

62. Andersen-Ranberg A. Metals and flukes in West Greenland ringed seals (Pusa hispida)—a histopathological, toxicological, parasitological and molecular study [M.Sc. thesis]. University of Copenhagen; 2014.

63. Sonne-Hansen C., Dietz R., Leifsson P.S., Hyldstrup L., Rigét F.F. Cadmium toxicity to ringed seals (Phoca hispida)—an epidemiological study of possible cadmium induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland. Sci. Total Environ. 2002;295(1-3):167–181. https://doi.org/10.1016/s0048-9697(02)00092-x

64. Woshner V.M. Concentrations and interactions of selected elements in tissues of four marine mammal species harvested by Inuit hunters in arctic Alaska, with an intensive histologic assessment, emphasizing the beluga whale [Ph.D. Dissertation]. University of Illinois at Urbana—Champaign; 2000.

65. Woshner V.M., O’Hara T.M., Bratton G.R., Suydam R.S., Beasley V.R. Concentrations and interactions of selected essential and non-essential elements in bowhead and beluga whales of Arctic Alaska. J. Wildl. Dis. 2001;37(4):693–710. https://doi.org/10.7589/0090-3558-37.4.693

66. Woshner V.M., Knott K., Wells R., Willetto .C, Swor R., O’Hara T. Mercury and selenium in blood and epidermis of bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, FL: interaction and relevance to life history and hematologic parameters. EcoHealth. 2008;5:360–370. https://doi.org/10.1007/s10393-008-0164-2

67. McKinney M.A., Iverson S.J., Fisk A.T., Sonne C., Rigét F.F., Letcher R.J. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 2013;19(8):2360–2372. https://doi.org/10.1111/gcb.12241

68. Rigét F.F., Braune B., Bignert A., Wilson S., Aars J., Born E., et al. Temporal trends of Hg in Arctic biota, an update. Sci. Total Environ. 2011;409(18):3520–3526. https://doi.org/10.1016/j.scitotenv.2011.05.002

69. Woshner V.M., O’Hara T.M., Bratton G.R., Beasley V.R. Concentrations and interactions of selected essential and non-essential elements in ringed seals and polar bears of Arctic Alaska. J. Wildl. Dis. 2001;37(4):711–721. https://doi.org/10.7589/0090-3558-37.4.711

70. Donaldson S.G., Van Oostdam J., Tikhonov C., Feeley M., Armstrong B., Ayotte P. et al. Environmental contaminants and human health in the Canadian Arctic. Sci. Total Environ. 2010;408(22):5165–5234. https://doi.org/10.1016/j.scitotenv.2010.04.059

71. Gebbink W.A., Sonne C., Dietz R., Kirkegaard M., Rigét F.F., Born E.W., Muir D.C.G., Letcher R.J. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus). Environ. Pollut. 2008;152(3):621–629. https://doi.org/10.1016/j.envpol.2007.07.001

72. Lagueux J., Pereg D., Ayotte P., Dewailly E., Poirier G.G. Cytochrome P450 CYP1A1 enzyme activity and DNA adducts in placenta of women environmentally exposed to organochlorines. Environ. Res. 1999;80(4):369–382. https://doi.org/10.1006/enrs.1998.3920

73. Medehouenou T.C., Larochelle C., Dumas P., Dewailly E., Ayotte P. Determinants of AhR-mediated transcriptional activity induced by plasma extracts from Nunavik Inuit adults. Chemosphere. 2010;80(2):75–82. https://doi.org/10.1016/j.chemosphere.2010.04.017

74. Sandau C.D., Ayotte P., Dewailly E., Duffe J., Norstrom R.J. Pentachlorophenol and hydroxylated polychlorinated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Québec. Environ. Health Perspect. 2002;110(4):411–417. https://doi.org/10.1289/ehp.02110411

75. Lind P.M., Bergman A., Olsson M., Orberg J. Bone mineral density in male Baltic grey seal (Halichoerus grypus). Ambio. 2003;32(6):385–388.

76. Lind P.M., Milnes M.R., Lundberg R., Bermudez D., Örberg J., Guillette L.J. Abnormal bone composition in female juvenile American alligators from a pesticide-polluted lake (Lake Apopka, Florida). Environ Health Perspect. 2004;112(3):359–362. https://doi.org/10.1289/ehp.6524

77. Côté S., Ayotte P., Dodin S., Blanchet C., Mulvad G., Petersen H.S., Gingras S., Dewailly É. Plasma organochlorine concentrations and bone ultrasound measurements: a cross-sectional study in peri-and postmenopausal Inuit women from Greenland. Environ. Health. 2006;5(1):33. https://doi.org/10.1186/1476-069x-5-33

78. Herlin M., Kalantari F., Stern N., Sand S., Larsson S., Viluksela M. et al. Quantitative characterization of changes in bone geometry, mineral density and bio-mechanical properties in two rat strains with different Ah-receptor structures after long-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology. 2010;29(1-3):1–11. https://doi.org/10.1016/j.tox.2010.04.006

79. Paunescu A.C., Dewailly E., Dodin S., Nieboer E., Ayotte P. Dioxin-like compounds and bone quality in Cree women of Eastern James Bay (Canada): a cross-sectional study. Environ. Health. 2013;12:54. https://doi.org/10.1186/1476-069x-12-54

80. Jenssen B.M. Endocrine-disrupting chemicals and climate change: a worst-case combination for Arctic marine mammals and seabirds? Environ. Health Perspect. 2006;114(1):76–80. https://doi.org/10.1289/ehp.8057

81. Dallaire R., Dewailly E., Ayotte P., Forget-Dubois N., Jacobson S.W., Jacobson J.L., Muckle G. Growth in Inuit children exposed to polychlorinated biphenyls and lead during fetal development and childhood. Environ. Res. 2014;134:17–23. https://doi.org/10.1016/j.envres.2014.06.023

82. Dallaire R., Dewailly E., Ayotte P., Muckle G., Laliberte C., Bruneau S. Effects of prenatal exposure to organochlorines on thyroid hormone status in newborns from two remote coastal regions in Quebec, Canada. Environ. Res. 2008;108(3):387–392. https://doi.org/10.1016/j.envres.2008.08.004

83. Gustavson L., Ciesielski T.M., Bytingsvik J., Styrishave B., Hansen M., Lie E., Aars J., Jenssen B.M. Hydroxylated polychlorinated biphenyls decrease circulating steroids in female polar bears (Ursus maritimus). Environ. Res. 2015;138:191–201. https://doi.org/10.1016/j.envres.2015.02.011

84. Ciesielski T.M., Hansen I.T., Bytingsvik J., Hansen M., Lie E., Aars J., Jenssen B.M., Styrishave B. Relationships between POPs, biometrics and circulating steroids in male polar bears (Ursus maritimus) from Svalbard. Environ. Pollut. 2017;230:598–608. https://doi.org/10.1016/j.envpol.2017.06.095

85. Sonne C, Leifsson PS, Dietz R, Born EW, Letcher RJ, Hyldstrup L. et al. Xenoendocrine pollutants may reduce size of sexual organs in East Greenland polar bears (Ursus maritimus). Environ. Sci. Technol. 2006;40(18):5668–5674. https://doi.org/10.1021/es060836n

86. Desforges J.P.W., Sonne C., Levin M., Siebert U., De Guise S., Dietz R. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 2016;86:126–139. https://doi.org/10.1016/j.envint.2015.10.007

87. Sonne C., Letcher R. J., Jenssen B. M., Desforges J. P., Eulaers I., Andersen-Ranberg E., Dietz R. A veterinary perspective on One Health in the Arctic. Acta Veterinaria Scandinavica. 2017;59:84. https://doi.org/10.1186/s13028-017-0353-5

88. Vos J.G., Luster M.I. Immune alterations. In: Kimbrough R.D., Jensen A.D., eds. Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins, and related products. Amsterdam: Elsevier; 1989, pp. 295–322. https://doi.org/10.1016/b978-0-444-81029-8.50014-x

89. Janeway C.A., Travers P., Walport M., Shlomchik M. Immune biology — the immune system in health and disease. 5th ed. New York: Garland Publishing, Taylor and Francis; 2001.

90. Tryphonas H. Immunotoxicity of Genaro polychlorinated-biphenyls—present status and future considerations. In: Esser C., Gleichmann E., Karger S., eds. Dioxins and the Immune System: Mechanisms and Consequences of Interference. Karger; 1994, pp. 149–162. https://doi.org/10.1159/000424206

91. Hertz-Picciotto I., Park H.Y., Dostal M., Kocan A., Trnovec T., Sram R. Prenatal exposures

92. to persistent and non-persistent organic compounds and effects on immune system development // Basic Clin. Pharmacol. Toxicol. 2008;102(2):146–154. https://doi.org/10.1111/j.1742-7843.2007.00190.x

93. Klecha A.J., Barreiro Arcos M.L., Frick L., A.M., Cremaschi G. Immune-endocrine interactions in autoimmune thyroid diseases. Neuroimmunomodulation. 2008;15:68–75. https://doi.org/10.1159/000135626

94. Lie E., Larsen H.J.S., Larsen S., Johansen G.M., Derocher A.E., Lunn N.J., et al. Does high organochlorine (OC) exposure impair the resistance to infection in polar bears (Ursus maritimus)? Part I: effect of OCs on the humoral immunity. J. Toxicol. Environ. Health A. 2004;67(7):555– 582. https://doi.org/10.1080/15287390490425597

95. Lie E., Larsen H.J.S., Larsen S., Johansen G.M., Derocher A.E., Lunn N.J., et al. Does high organochlorine (OC) exposure impair the resistance to infection in polar bears (Ursus maritimus)? Part II: possible effect of OCs on mitogen- and antigen-induced lymphocyte proliferation. J. Toxicol. Environ. Health A. 2005;68(6):457–484. https://doi.org/10.1080/15287390590903685

96. Routti H., Arukwe A., Jenssen B.M., Letcher R.J., Nyman M., Bäckman C., Gabrielsen G.W. Comparative endocrine disruptive effects of contaminants in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea. Comp. Biochem. Physiol. Toxicol. Pharmacol. 2010;152(3):306– 312. https://doi.org/10.1016/j.cbpc.2010.05.006

97. Brown T.M., Ross P.S., Reimer K.J., Veldhoen N., Danger N.J., Fisk A.T., Helbing C.C.. PCB related effects thresholds as derived through gene transcript profiles in locally contaminated ringed seals (Pusa hispida). Environ. Sci. Technol. 2014;48(21):12952–12961. https://doi.org/10.1021/es5032294

98. Levin M., Gebhard E., Jasperse L., Desforges J.P., Dietz R., Sonne C., et al. Immunomodulatory effects of exposure to polychlorinated biphenyls and perfluoroalkyl acids in East Greenland ringed seals (Pusa hispida). Environ. Res. 2016;151:244–250. https://doi.org/10.1016/j.envres.2016.07.013

99. Frouin H., Loseto L.L., Stern G., Haulena M., Ross P.S. Mercury toxicity in beluga whale lymphocytes: limited effects of selenium protection. Aquat. Toxicol. 2012;109:185–193. https://doi.org/10.1016/j.aquatox.2011.09.021

100. Weisglas-Kuperus N. Neurodevelopmental, immunological and endocrinological indices of perinatal human exposure to PCBs and dioxins. Chemosphere. 1998;37(9–12):1845–1853. https://doi.org/10.1016/s0045-6535(98)00250-1

101. Dewailly É., Ayotte P., Bruneau S., Laliberté C., Gingras S., Belles-Isles M., Roy R.. Susceptibility to infections and immune status in Inuit infants exposed to organochlorines. Environ. Health Perspect. 2000;108(3):205–211. https://doi.org/10.2307/3454435

102. Dallaire F., Dewailly É., Vézina C., Muckle G., Weber J.-P., Bruneau S., Ayotte P.m Effect of prenatal exposure to polychlorinated biphenyls on incidence of acute respiratory infections in preschool Inuit children. Environ. Health Perspect. 2006;114(8):1301–1305. https://doi.org/10.1289/ehp.8683

103. Parkinson A.J. The Arctic human health initiative: a legacy of the international polar year 2007–2009. Int. J. Circumpolar Health. 2013;72:10. https://doi.org/10.3402/ijch.v72i0.21655

104. Grandjean P., Landrigan P.J. Neurobehavioural effects of developmental toxicity The Lancet Neurology, 2014;13:330–338. https://doi.org/10.1016/s1474-4422(13)70278-3

105. Greaves A.K., Letcher R.J., Sonne C., Dietz R., Born E.W. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears. Environ. Sci. Technol. 2012;46(21):11575–11583. https://doi.org/10.1021/es303400f

106. Krey A., Kwan M., Chan H.M. Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic. Environ. Res. 2012;114:24–30. https://doi.org/10.1016/j.envres.2012.01.006

107. Greaves A.K., Letcher R.J., Sonne C., Dietz R. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears (Ursus maritimus). Environ. Toxicol. Chem. 2013;32(3):713–722. https://doi.org/10.1002/etc.2107

108. Pedersen K.E., Basu N., Letcher R.J., Greaves A.K., Sonne C., Dietz R., Styrishave B. Brain regionspecific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in East Greenland polar bears (Ursus maritimus). Environ. Res. 2015;138:22–31. https://doi.org/10.1016/j.envres.2015.01.015

109. Pedersen K.E., Basu N., Letcher R.J., Sonne C., Dietz R., Styrishave B. Per- and polyfluoroalkyl substances (PFASs) —new endocrine disruptors in polar bears (Ursus maritimus). Environ. Int. 2016;138:22–31. https://doi.org/10.1016/j.envres.2015.01.015

110. Fonnum F., Mariussen E. Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J. Neurochem. 2009;111(6):1327–1347. https://doi.org/10.1111/j.1471-4159.2009.06427.x

111. Mariussen E. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch. Toxicol. 2012;86:1349–1367. https://doi.org/10.1007/s00204-012-0822-6

112. Polder A., Gabrielsen G.W., Odland J.Ø., Savinova T.N., Tkachev A., Løken K.B., Skaare J.U. Spatial and temporal changes of chlorinated pesticides, PCBs, dioxins (PCDDs/PCDFs) and brominated flame retardants in human breast milk from northern Russia. Sci. Total Environ. 2008;391(1):41–54. https://doi.org/10.1016/j.scitotenv.2007.10.045

113. Bollati V., Baccarelli A. Environmental epigenetics. Heredity. 2010;105:105–112. https://doi. org/10.1038/hdy.2010.2

114. Crews D. Epigenetic modifications of brain and behavior: theory and practice. Horm. Behav. 2011;59(3):393–398. https://doi.org/10.1016/j.yhbeh.2010.07.001

115. Basu N., Scheuhammer A.M., Sonne C., Letcher R.J., Born E.W., Dietz R. Is mercury in the environment of neurotoxic concern to polar bears? Environ. Toxicol Chem. 2009;28(1):133–140. https://doi.org/10.1897/08-251.1

116. Pilsner J.R., Lazarus A.L., Nam D., Letcher R.J., Sonne C., Dietz R., Basu N. Mercury-associated DNA hypomethylation in polar bear brains via the Luminometric Methylation Assay (LUMA): a sensitive method to study epigenetics in wildlife. Mol Ecol. 2010;19(2):307–314. https://doi.org/10.1111/j.1365-294x.2009.04452.x

117. Siegel G.J., Albers R.W., Brady S.T., Price D.L. Basic neurochemistry. Molecular, cellular and medical aspects. 7th ed. — Burlington: Elsevier Academic; 2006.

118. Ahmed E.I., Zehr J.L., Schulz K.M., Lorenz B.H., Don Carlos L.L., Sisk C.L. Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nat. Neurosci. 2008;11:995–997. https://doi.org/10.1038/nn.2178

119. Zoeller R.T., Crofton K.M. Mode of action: developmental thyroid hormone insufficiency— neurological abnormalities resulting from exposure to propylthiouracil. Crit. Rev. Toxicol. 2005;35(8-9):771–781. https://doi.org/10.1080/10408440591007313

120. Bytingsvik J., Simon E., Leonards P.E.G., Lamoree M., Lie E., Aars J., et al. Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs. Environ. Sci. Technol. 2013;47(9):4778–4786. https://doi.org/10.1021/es305160v

121. Simon E., van Velzen M., Brandsma S.H., Lie E., Løken K, de Boer J., et al. Effect-directed analysis to explore the polar bear exposome: identification of thyroid hormone disrupting compounds in plasma. Environ. Sci. Technol. 2013;47(15):8902–8912. https://doi.org/10.1021/es401696u

122. McKinney M.A., Pedro S., Dietz R., Sonne C., Fisk A.T., Roy D., Jenssen B.M., Letcher R.J. A review of ecological impacts of global climate change on persistent organic pollutant and mercury pathways and exposures in arctic marine ecosystems. Curr. Zool. 2015;61(4):617–628. https://doi.org/10.1093/czoolo/61.4.617

123. Harvell C.D., Mitchell C.E., Ward J.R., Altizer S., Dobson A.P., Ostfeld R.S., Samuel M.D. Climate warming and disease risks for terrestrial and marine biota. Science. 2002;296(5576):2158– 2162. https://doi.org/10.1126/science.1063699

124. Burek K.A., Gulland F.M.D., O’Hara T.M. Effects of climate change on Arctic marine mammal health. Ecol. Appl. 2008;18(sp2):126–134. https://doi.org/10.1890/06-0553.1

125. Dudley J.P., Hoberg E.P., Jenkins E.J., Parkinson A.J. Climate change in the North American Arctic: a One Health perspective. EcoHealth. 2015;12:713–725. https://doi.org/10.1007/s10393-015-1036-1

126. Bradley M., Kutz S.J., Jenkins E., O’Hara T.M. The potential impact of climate change on infectious diseases of Arctic fauna. Int. J. Circumpolar Health. 2005;64(5):468–477. https://doi.org/10.3402/ijch.v64i5.18028

127. Greer A., Ng V., Fisman D. Climate change and infectious diseases in North America: the road ahead. CMAJ. 2008;178(6):715–722. https://doi.org/10.1503/cmaj.081325

128. Rand A.A., Mabury S.A. Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxilates? Toxicology. 2017;375:28–36. https://doi.org/10.1016/j.tox.2016.11.011

129. Durner G.M., Douglas D.C., Nielson R.M., Amstrup S.C., McDonald T.L., Stirling I. et al. Predicting 21st-century polar bear habitat distribution from global climate models. Ecol. Monogr. 2009;79(1):25–58. https://doi.org/10.1890/07-2089.1

130. Molnár P.K., Derocher A.E., Klanjscek T., Lewis M.A. Predicting climate change impacts on polar bear litter size. Nat. Commun. 2011;2:186. https://doi.org/10.1038/ncomms1183

131. Derocher A.E., Aars J., Amstrup S.C., Cutting A., Lunn N.J., Molnár P.K. et al. Rapid ecosystem change and polar bear conservation. Conserv. Lett. 2013;6(5):368–375. https://doi.org/10.1111/conl.12009

132. Hamilton S.G., de la Guardia L.C., Derocher A.E., Sahanatien V., Tremblay B., Huard D. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago. PLoS ONE 2014;9(11):e113746. https://doi.org/10.1371/journal.pone.0113746

133. Amstrup S.C., Marcot B.G., Douglas D.C. A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears. In: DeWeaver E.T., Bitz C.M., Tremblay L.-B., (eds.). Arctic sea ice decline: observations, projections, mechanisms, and implications, vol. 180. Washington, DC: American Geophysical Union; 2018, p. 213–268. https://doi.org/10.1029/180gm14

134. Olsen G.H., Mauritzen M., Derocher A.E., Sørmo E.G., Skaare J.U., Wiig O., Jenssen B.M. Space-use strategy is an important determinant of PCB concentrations in female polar bears in the Barents Sea. Environ. Sci. Technol. 2003;37(21):4919–4924. https://doi.org/10.1021/es034380a

135. van Beest F.M., Aars J., Routti H., Lie E., Andersen M., Pavlova V., Sonne C., Nabe-Nielsen J., Dietz R. Spatiotemporal variation in home range size of female polar bears and correlations with individual contaminant load. Polar. Biol. 2016;39(8):1479–1489. https://doi.org/10.1007/s00300-015-1876-8

136. McKinney M.A., Peacock E., Letcher R.J. Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. Environ. Sci. Technol. 2009;43(12):4334–4339. https://doi.org/10.1021/es900471g

137. Gormezano L.J., Rockwell R.F. What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay. Ecol. Evol. 2013;3(10):3509–3523. https://doi.org/10.1002/ece3.740

138. Iles D.T., Petersen S.L., Gormezano L.J., Koons D.N., Rockwell R.F. Terrestrial predation by polar bears: not just a wild goose chase. Polar Biol. 2013;36:1373–1379. https://doi.org/10.1007/s00300-013-1341-5

139. Iverson S.A., Gilchrist H.G., Smith P.A., Gaston A.J., Forbes M.R. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic. Proc. R. Soc. B. 2014;281(1779):20133128. https://doi.org/10.1098/rspb.2013.3128

140. Valdimarsson H., Astthorsson O.S., Palsson J. Hydrographic variability in Icelandic waters during recent decades and related changes in distribution of some fish species. ICES J. Mar. Sci. 2012;69(5):816–825. https://doi.org/10.1093/icesjms/fss027

141. MacKenzie B.R., Payne M.R., Boje J., Hoyer J.L., Siegstad H. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Chang. Biol. 2014;20(8):2484–2491. https://doi.org/10.1111/gcb.12597

142. Macdonald R.W., Harner T., Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total. Environ. 2005;342(1-3):5–86. https://doi.org/10.1016/j.scitotenv.2004.12.059

143. Carrie J., Wang F., Sanei H., Macdonald R.W., Outridge P.M., Stern G.A. Increasing contaminant burdens in an arctic fish, burbot (Lota lota), in a warming climate. Environ. Sci. Technol. 2010;44(1):316–322. https://doi.org/10.1021/es902582y

144. Чусов А.Н., Шилин М.Б., Абрамов В.М., Жигульский В.А. Управление природными рисками. СПб.: Политех-Пресс; 2024. [Chusov A.N., Shilin M.B., Abramov V.M., Zhigul’skii V.A. Natural risk management. St. Petersburg: Polytech-Press; 2024. (In Russ.)].

145. Parkinson A.J., Butler J.C. Potential impacts of climate change on infectious diseases in the Arctic. Int. J. Circumpolar Health. 2005;64(5):478–486. https://doi.org/10.3402/ijch.v64i5.18029

146. Tryland M., Nesbakken T., Robertson L., Grahek-Ogden D., Lunestad B.T. Human pathogens in marine mammal meat — a northern perspective. Zoonoses Publ. Health. 2013;61(6):377–394. https://doi.org/10.1111/zph.12080

147. Wilkinson J. L., Hooda P.S., Barker J., Barton S., Swinden J. Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: a review of environmental, receptormediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Crit. Review Environ. Sci Technol. 2016;46(4):336–381. https://doi.org/10.1080/106 43389.2015.1096876

148. Jenssen B.M. Marine pollution: the future challenge is to link human and wildlife studies. Environ. Health Perspect. 2003;111(4):A198–199. https://doi.org/10.1289/ehp.111-a198

149. Parkinson A.J. The Arctic human health initiative: a legacy of the international polar year 2007–2009. Int. J. Circumpolar Health. 2013;72(1):10. https://doi.org/10.3402/ijch.v72i0.21655

150. Weihe P., Debes F., Halling J., Petersen M.S., Muckle G., Odland J.O., et al. Health effects associated with measured levels of contaminants in the Arctic. Int. J. Circumpolar Health. 2016;75(1):33805. https://doi.org/10.3402/ijch.v75.33805

151. Karlin L.N., Abramov V.M., Gogoberidze G.G., Lednova Yu.A. Analysis of the socio-economic situation in the Arctic coastal regions of the Russian Federation on the basis of indicator assessment of the marine economic potential. Proceedings of the Russian State Hydrometeorological University. 2013;(30):181–188. (In Russ.)

152. Аbramov V.M., Sokolov A.G., Baikov E.A., Lukyanov S.V., Tatarenko Yu.A., Vekshina T.V., Isaev D.I., Trunin S.V. Geo-information Tools Develop for Integrated Coastal Zone Management in Arctic and Subarctic. In: Proceedings of the 34th International Business Information Management Association Conference (IBIMA), Madrid, Spain, 13–14 November, 2019, pp. 10763–10771.

153. Shilin M.B., Abramov V.M., Andreeva E.S., Andreev S.S., Yaily E.A. Innovative technologies for geo-ecological support while artificial coastal territories development. In: 19th international multidisciplinary scientific geoconference SGEM 2019: Conference proceedings. Vol. 19. Sophia; 2019, pp. 399–406. https://doi.org/10.5593/sgem2019/5.1/S20.050


Review

For citations:


Shilin M.B., Abramova A.L., Abramov V.M., Zavyalova A.N. Bound by one chain: Forming an ecological approach to assessing the impact of pollutants and toxic substances on human and animal health in the Arctic. Arctic and Innovations. 2025;3(4):6-25. (In Russ.) https://doi.org/10.21443/3034-1434-2025-3-4-6-25

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-1434 (Online)